
SATISFIABILITY

MODULO THEORIES
Presenters:

Aaron Gorenstein

Erin Brady

Why are we here?

• FOL is pretty expressive, many utilities

• Determining if a FOL example is SAT is hard

• Propositional SAT is (comparatively) easy

• Perhaps we can meet SAT halfway

• Limit ourselves to “theories”

Two Directions

• Eager: Aaron

• Translate necessary theories into SAT, and solve

• Lazy: Erin (sorry)

• Solve SAT, and then see if it also works with theory

Theories?

• Constraints over FOL

• Example:

X < Y ^ ~(X < Y + 0)

• Ʃ (signature)

Theories? Cont’d

• Equality (Needs no theories!)

• Integer and Real Arithmetic (no multiplication – why?)

• Arrays

• Fixed-width bit vectors

• Inductive data types

The Importance of Being Eager

• Idea: given statement, “translate” sufficient facts from

theory to derive “equisatisfiable” SAT clause

• Tricky part: translation!

• Correctness

• Speed

• Size

Beginning Translation

• Where do we start?

• Integer arithmetic, equality, and enhance with “limited lambdas.”

• Path to SAT

• Eliminate (expand) lambdas, then functions and predicates, and

then integer to boolean form.

• Wait, lambdas?

String Replacement for Translation

• Eliminate Lambdas

• Straightforward

• Function/Predicate Elimination

• Naïve: replace every f(a, b, … z) with atom xF

• Issue: if f(a, b) appears twice?

From Arithmetic to Boolean

• Where are we?

• 𝑎𝑖,𝑗
𝑛
𝑗=1 𝑥𝑗 ≥ 𝑏𝑗

• Integer linear programming!

• Simpler: direct encoding

• Replace each unique constraint in the linear arithmetic formula with

a fresh Boolean variable (creates Fbvar)

• Generate a Boolean formula Fcons that encodes constraints to

maintain validity of formula

• AND and SAT!

• So wait, how do we encode constraints?

• Equality, difference, and arbitrary!

Translation 4

• Small-domain encodings

• A satisfying assignment is bounded by m, n, length of a, length of b

• General solver would deal with solution size

• O(log m + log b + m (log m + log a))

• Problem: that m log m term – may have thousands of constraints!

• Equality

• Difference

• Sum constraints of form (xi + xj) R bt

• Mostly-difference constraints with sparse (few vars per) constraint

Lazy Approach

• Lazy SMT T-Solvers are the alternative to the eager

approach

• Start with an efficient SAT solver

• Integrate with decision procedures for first-order theories

(Theory, or T-Solvers)

Integrating SAT Solver and T-Solver

• Offline schema

• Uses DPLL and T-Solver as two separate parts

• Give boolean version (φP) of input formula (φ)

• Input to DPLL

• φP unsatisfiable? Then φ is T-unsatisfiable

• φP satisfied by µP? Input µ into T-solver

• If µ is T-consistent, then φ is T-consistent

• If µ is T-inconsistent, add ~µP to φP and restart DPLL

Integrating SAT Solver and T-Solver

• Online schema:

• Modifies DPLL to enumerate truth assignments that are checked by

a T-Solver

How DPLL and T-DPLL Differ

• T-DPLL extends DPLL concepts of:

• Literal deduction: check for new literal assignments by using the

boolean formulas, but also by using the theory

• Conflict deduction: check for boolean conflicts or theory conflicts

that entail {[]}

Enhancements to T-DPLL

• Normalize T-atoms

• Static learning

• Early pruning

• T-propagation

• T-backjumping/T-learning

• Generating partial assignments

• Pure-literal filtering

Abstract Theory

Fair Rule Application Strategy

Properties of T-Solvers

• Input: Collection of T-literals µ

• Output: T-SAT or T-UNSAT for µ

• Typically involve a specific design procedure that was

developed with the background theory in mind

Features of T-Solvers

• Model generation: for a T-consistent set µ, the T-solver

can generate a T-model ∫ such that ∫ |=T µ

• Conflict set generation: for a T-inconsistent set µ, the T-

solver can find a subset n – the theory conflict set - which

has caused the inconsistency

Features of T-Solvers

• Incrementality: the T-solver can remember previous calls

– so, if µ1 is T-satisfiable and the T-Solver is called for µ1

U µ2, it does not restart the computation from scratch

• Backtrackability: the T-solver can undo steps to return to

a previous state efficiently

Features of T-Solvers

• Deduction of unassigned literals: if the T-solver is

given a T-consistent set, it can also find and decide literals

from unassigned atoms in the original formula

• Deduction of interface equalities: when returning SAT,

the T-solver can deduce equalities between the

variables/terms in µ

Theory of Equality

• No restrictions on interpretation of function/predicate

symbols

• Given a signature ∑, the theory that includes all possible

models is TƐ

• Also known as the “empty theory” or the “theory of

equality with uninterpreted functions”

Shostak’s Method

• General method to combine theory of equality with other

appropriate theories

• Important definitions:

• solved form S: Each lefthand side appears only once

• yF(G) means that there will be no conflicts that occur from replacing

variables

Shostak Theory

• A consistent theory T with signature ∑ is a Shostak theory

if:

• ∑ has no predicate symbols

• There is a canonizer function (∑-terms -> ∑-terms) such that |=T s=t

iff canon(s) == canon(t)

• There is a solver function (∑-eqs -> formula sets):

• If |=T s≠t , then solve(s=t) == { [] }

• Else, solve(s = t) returns a set S of equations in solved form such that

|=T s=t <-> ys=t(S).

Splitting on Demand

• T-solvers can demand that the DPLL continue to split

before passing anything to the T-solver

• Literals could be unknown to DPLL, or contain fresh

constant symbols

• Must allow new symbols to be added to the list of clauses

• Allows the T-solver, with it’s knowledge of the background

theory, to dictate in which direction DPLL should go

Layered Theory Solvers

• T-solvers are “layered” by their complexity levels

• If a solution is not found by a simple T-solver, move on

Citations

• Topic, materials, and figures from

C. Barrett, R. Sebastiani, S. A. Seshia, & C. Tinelli,

Satisfiability Modulo Theories, in A. Biere, H. van Maaren,

M. Heule and Toby Walsh, Eds.,Handbook of Satisfiability,

IOS Press, 2009

• Thanks to Professor Kautz for discussion clarifying

concepts!

