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Why are we here? 

• FOL is pretty expressive, many utilities 

• Determining if a FOL example is SAT is hard 

• Propositional SAT is (comparatively) easy 

• Perhaps we can meet SAT halfway 

• Limit ourselves to “theories” 



Two Directions 

• Eager: Aaron 

• Translate necessary theories into SAT, and solve 

• Lazy: Erin (sorry) 

• Solve SAT, and then see if it also works with theory 



Theories? 

• Constraints over FOL 

• Example: 

X < Y ^ ~(X < Y + 0) 

• Ʃ (signature) 



Theories? Cont’d 

• Equality (Needs no theories!) 

• Integer and Real Arithmetic (no multiplication – why?) 

• Arrays 

• Fixed-width bit vectors 

• Inductive data types 

 



The Importance of Being Eager 

• Idea: given statement, “translate” sufficient facts from 

theory to derive “equisatisfiable” SAT clause 

• Tricky part: translation! 

• Correctness 

• Speed 

• Size 



Beginning Translation 

• Where do we start? 

• Integer arithmetic, equality, and enhance with “limited lambdas.” 

• Path to SAT 

• Eliminate (expand) lambdas, then functions and predicates, and 

then integer to boolean form. 

 

• Wait, lambdas? 



String Replacement for Translation 

• Eliminate Lambdas 

• Straightforward 

• Function/Predicate Elimination 

• Naïve: replace every f(a, b, … z) with atom xF 

• Issue: if f(a, b) appears twice? 



From Arithmetic to Boolean 

• Where are we? 

•  𝑎𝑖,𝑗
𝑛
𝑗=1 𝑥𝑗 ≥ 𝑏𝑗 

• Integer linear programming! 

• Simpler: direct encoding 

• Replace each unique constraint in the linear arithmetic formula with 

a fresh Boolean variable (creates Fbvar) 

• Generate a Boolean formula Fcons that encodes constraints to 

maintain validity of formula 

• AND and SAT! 

• So wait, how do we encode constraints? 

• Equality, difference, and arbitrary! 



Translation 4 

• Small-domain encodings 

• A satisfying assignment is bounded by m, n, length of a, length of b 

• General solver would deal with solution size 

• O(log m + log b + m (log m + log a)) 

• Problem: that m log m term – may have thousands of constraints! 

• Equality 

• Difference 

• Sum constraints of form (xi + xj) R bt 

• Mostly-difference constraints with sparse (few vars per) constraint 



Lazy Approach 

• Lazy SMT T-Solvers are the alternative to the eager 

approach 

• Start with an efficient SAT solver 

• Integrate with decision procedures for first-order theories 

(Theory, or T-Solvers) 



Integrating SAT Solver and T-Solver 

• Offline schema  

• Uses DPLL and T-Solver as two separate parts 

• Give boolean version (φP) of input formula (φ) 

• Input  to DPLL 

• φP unsatisfiable?  Then φ is T-unsatisfiable 

• φP satisfied by µP?  Input µ into T-solver 

• If µ is T-consistent, then φ is T-consistent 

• If µ is T-inconsistent, add ~µP to φP and restart DPLL 



Integrating SAT Solver and T-Solver 

• Online schema: 

• Modifies DPLL to enumerate truth assignments that are checked by 

a T-Solver 



How DPLL and T-DPLL Differ 

• T-DPLL extends DPLL concepts of: 

• Literal deduction:  check for new literal assignments by using the 

boolean formulas, but also by using the theory  

• Conflict deduction:  check for boolean conflicts or theory conflicts 

that entail {[]} 



Enhancements to T-DPLL 

• Normalize T-atoms 

• Static learning 

• Early pruning 

• T-propagation 

• T-backjumping/T-learning 

• Generating partial assignments 

• Pure-literal filtering 



Abstract Theory 

 



Fair Rule Application Strategy 

 



Properties of T-Solvers 

• Input:  Collection of T-literals µ 

• Output: T-SAT or T-UNSAT for µ 

• Typically involve a specific design procedure that was 

developed with the background theory in mind 



Features of T-Solvers 

• Model generation:  for a T-consistent set µ, the T-solver 

can generate a T-model ∫ such that ∫ |=T µ 

• Conflict set generation:  for a T-inconsistent set µ, the T-

solver can find a subset n – the theory conflict set - which 

has caused the inconsistency 

 



Features of T-Solvers 

• Incrementality: the T-solver can remember previous calls 

– so, if µ1 is T-satisfiable and the T-Solver is called for µ1 

U µ2, it does not restart the computation from scratch 

• Backtrackability: the T-solver can undo steps to return to 

a previous state efficiently 



Features of T-Solvers 

• Deduction of unassigned literals:  if the T-solver is 

given a T-consistent set, it can also find and decide literals 

from unassigned atoms in the original formula 

• Deduction of interface equalities:  when returning SAT, 

the T-solver can deduce equalities between the 

variables/terms in µ 



Theory of Equality 

• No restrictions on interpretation of function/predicate 

symbols 

• Given a signature ∑, the theory that includes all possible 

models is TƐ 

• Also known as the “empty theory” or the “theory of 

equality with uninterpreted functions” 



Shostak’s Method 

• General method to combine theory of equality with other 

appropriate theories 

• Important definitions: 

• solved form S:  Each lefthand side appears only once 

• yF(G) means that there will be no conflicts that occur from replacing 

variables 

 



Shostak Theory 

• A consistent theory T with signature ∑ is a Shostak theory 

if: 

• ∑ has no predicate symbols 

• There is a canonizer function (∑-terms -> ∑-terms) such that |=T s=t 

iff canon(s) == canon(t) 

• There is a solver function (∑-eqs -> formula sets): 

• If |=T s≠t , then solve(s=t) == { [] } 

• Else, solve(s = t) returns a set S of equations in solved form such that 

|=T s=t <-> ys=t(S). 



Splitting on Demand 

• T-solvers can demand that the DPLL continue to split 

before passing anything to the T-solver 

• Literals could be unknown to DPLL, or contain fresh 

constant symbols 

• Must allow new symbols to be added to the list of clauses 

• Allows the T-solver, with it’s knowledge of the background 

theory, to dictate in which direction DPLL should go 



Layered Theory Solvers 

• T-solvers are “layered” by their complexity levels 

• If a solution is not found by a simple T-solver, move on 
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• Thanks to Professor Kautz for discussion clarifying 

concepts! 


